TSP With Locational Uncertainty: The Adversarial Model

نویسندگان

  • Gui Citovsky
  • Tyler Mayer
  • Joseph S. B. Mitchell
چکیده

In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with point-locational-uncertainty which we will call the adversarial TSP problem (ATSP). Given a metric space (X, d) and a set of subsets R = {R1, R2, ..., Rn} : Ri ⊆ X, the goal is to devise an ordering of the regions, σR, that the tour will visit such that when a single point is chosen from each region, the induced tour over those points in the ordering prescribed by σR is as short as possible. Unlike the classical locational-uncertainty-TSP problem, which focuses on minimizing the expected length of such a tour when the point within each region is chosen according to some probability distribution, here, we focus on the adversarial model in which once the choice of σR is announced, an adversary selects a point from each region in order to make the resulting tour as long as possible. In other words, we consider an offline problem in which the goal is to determine an ordering of the regions R that is optimal with respect to the “worst” point possible within each region being chosen by an adversary, who knows the chosen ordering. We give a 3-approximation when R is a set of arbitrary regions/sets of points in a metric space. We show how geometry leads to improved constant factor approximations when regions are parallel line segments of the same lengths, and a polynomial-time approximation scheme (PTAS) for the important special case in which R is a set of disjoint unit disks in the plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Model Uncertainty for Adversarial Examples using Dropouts

An image can undergo a visually imperceptible change and yet get confidently misclassified by a trained Neural Network. Puzzled by this counter-intuitive behaviour, a lot of research has been undertaken in search of answers for this inexplicable phenomenon and more importantly, a possibility to impart robustness against adversarial misclassification. This thesis is a first step in the direction...

متن کامل

Adversarial Phenomenon in the Eyes of Bayesian Deep Learning

Deep Learning models are vulnerable to adversarial examples, i.e. images obtained via deliberate imperceptible perturbations, such that the model misclassifies them with high confidence. However, class confidence by itself is an incomplete picture of uncertainty. We therefore use principled Bayesian methods to capture model uncertainty in prediction for observing adversarial misclassification. ...

متن کامل

Understanding Measures of Uncertainty for Adversarial Example Detection

Measuring uncertainty is a promising technique for detecting adversarial examples, crafted inputs on which the model predicts an incorrect class with high confidence. But many measures of uncertainty exist, including predictive entropy and mutual information, each capturing different types of uncertainty. We study these measures, and shed light on why mutual information seems to be effective at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017